Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 926: 172056, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38552980

RESUMO

Dissolved oxygen (DO) is an important parameter that affects the biology, physiology, and immunology of aquatic animals. In recent decades, DO levels in the global oceans have sharply decreased, partly due to an increase in atmospheric carbon dioxide, temperature, and anthropogenic nutrient loads. Although there have been many reports on the effects of hypoxia on the survival, growth, behavior, and immunity of bivalves, this information has not been well organized. Therefore, this article provides a comprehensive review of the effects of hypoxia on bivalves. In general, hypoxia negatively impacts the food consumption rate and assimilation efficiency, as well as increasing respiration rates in many bivalves. As a result, it reduces the energy allocation for bivalve growth, shell formation, and reproduction. In severe cases, prolonged exposure to hypoxia can result in mass mortality in bivalves. Moreover, hypoxia also has adverse effects on the immunity and response of bivalves to predators, including decreased burial depths, sensitivity to predators, impairment of byssus production, and negatively impacts on the integrity, strength, and composition of bivalve shells. The tolerance of bivalves to hypoxia largely depends on size and species, with larger bivalves being more susceptible to hypoxia and intertidal species being relatively more tolerant to hypoxia. The information in this article is very useful for elucidating the current research status of hypoxia on bivalves and determining future research directions.


Assuntos
Bivalves , Animais , Oceanos e Mares , Hipóxia , Oxigênio , Temperatura
2.
Crit Rev Food Sci Nutr ; : 1-12, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329037

RESUMO

Bivalves are a high-quality source of animal protein for human consumption. In recent years, the demand for bivalve proteins has increased dramatically, leading to a sharp increase in global production of marine bivalves. To date, although the amino acid profiles of many bivalves have been reported, such information has not been well organized. Therefore, there is an urgent need for a comprehensive scientific review of the protein quality of bivalves, especially commercially important edible bivalves. In this context, this study was conducted to evaluate the protein quality of commercially important edible bivalves. In general, most bivalves are rich in protein (> 50% of their dry weight) and amino acids (> 30 g/100g protein). Although most species of bivalves are rich in essential amino acids (EAA) (up to 50 g/100g protein), some species of edible bivalves have very low levels of EAA (< 5 g/100g protein). Based on the AA score, almost all bivalves have at least two limiting AAs. Most bivalve proteins provides delicious flavors with unami, sweetness and a hint of bitterness. The findings of this study not only serve as a a guide for selecting appropriate bivalves based on consumer preferences for specific AAs or AA scores, but also provide information on potential bivalve species for aquaculture to produce higher protein quality to meet the growing demand for high quality animal protein.

3.
Sci Rep ; 14(1): 2903, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316820

RESUMO

This study was conducted to investigate the energy mobilisation preference and ionoregulation pattern of female tilapia, Oreochromis sp. living in different environments. Three different treatments of tilapia as physiology compromising model were compared; tilapia cultured in recirculating aquaculture system (RAS as Treatment I-RAS), tilapia cultured in open water cage (Treatment II-Cage) and tilapia transferred from cage and cultured in RAS (Treatment III-Compensation). Results revealed that tilapia from Treatment I and III mobilised lipid to support gonadogenesis, whilst Treatment II tilapia mobilised glycogen as primary energy for daily exercise activity and reserved protein for growth. The gills and kidney Na+/K+ ATPase (NKA) activities remained relatively stable to maintain homeostasis with a stable Na+ and K+ levels. As a remark, this study revealed that tilapia strategized their energy mobilisation preference in accessing glycogen as an easy energy to support exercise metabolism and protein somatogenesis in cage culture condition, while tilapia cultured in RAS mobilised lipid for gonadagenesis purposes.


Assuntos
Ciclídeos , Tilápia , Animais , Feminino , Tilápia/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Ciclídeos/metabolismo , Reprodução , Glicogênio/metabolismo , Lipídeos , Brânquias/metabolismo
4.
Heliyon ; 10(4): e25559, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38404778

RESUMO

Current water warming and freshwater acidification undoubtedly affect the life of aquatic animals especially ammonotelic teleost by altering their physiological responses. The effect of temperature (28 °C vs 32 °C) and pH (7 vs. 5) on the metabolic compromising strategies of Hoven's carp (Leptobarbus hoevenii) was investigated in this study. Fishes were conditioned to (i) 28 °C + pH 7 (N28°C); (ii) 32 °C + pH 7 (N32°C); (iii) 28 °C + pH 5 (L28°C) and (iv) 32 °C + pH 5 (L32°C) for 20 days followed by osmorespiration assay. Results showed that feeding performance of Hoven's carp was significantly depressed when exposed to low pH conditions (L28°C and L32°C). However, by exposed Hoven's carp to L32°C induced high metabolic oxygen intake and ammonia excretion to about 2x-folds higher compared to the control group. As for energy mobilization, Hoven's carp mobilized liver and muscle protein under L28°C condition. Whereas under high temperature in both pH, Hoven's carp had the tendency to reserve energy in both of liver and muscle. The findings of this study revealed that Hoven's carp is sensitive to lower water pH and high temperature, thereby they remodeled their physiological needs to cope with the environmental changes condition.

5.
Crit Rev Food Sci Nutr ; : 1-8, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294719

RESUMO

Bivalves are nutritious animal protein source for humans, rich in high quality proteins, lipids, and carbohydrates. Many studies have shown that ocean warming has detrimental effects on the nutritional quality of bivalves. Although a number of studies are available on the effect of ocean warming on the nutritional value of bivalves, this information is not well organized. In this context, the current study provides a critical review of the effects of ocean warming on the nutritional quality of commercially important edible marine bivalves. In general, ocean warming has caused a reduction in the total lipid and carbohydrate content of bivalves, especially those bivalves inhabiting temperate regions. As for protein, there is no general trend in the effects of ocean warming on the protein reserves of bivalves. In addition, the specific effects of elevated temperature on the macro-nutrients of bivalves highly depend on the tissues, sex and developmental stages of bivalves, as well as seasonal factors. This review not only fills in the knowledge gap regarding the effects of elevated temperature on the macro-nutrients of commercially important marine bivalves but also provides guidance for the establishment of bivalve aquaculture and fisheries management plans to mitigate the impact of climate change.

6.
Food Chem X ; 20: 101034, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38144794

RESUMO

Fish and shellfish are important sources of high quality lipids, especially omega-3 long-chain polyunsaturated fatty acids. In most countries, seafood is eaten cooked to eliminate any potential parasites and pathogens. In addition, cold storage plays an important role in extending the shelf life of seafood. However, both cooking and storage processes can cause alterations in the lipid content and fatty acid profile of fish and shellfish. Although the lipid nutritional quality of fish and shellfish have recently been reviewed, these reviews mainly focus on raw seafood, and information on the impact of food processing on the lipid nutritional quality of fish and shellfish still lacks coherence. Therefore, this study was carried out to provides a critical reviews on the effects of food processing, especially cooking and cold storge, on the lipid nutritional quality of fish and shellfish. Overall, from the perspective of lipid nutritional quality, baking and steaming are the most recommended cooking methods for fish and shellfish, respectively, while it is strongly not recommended to fry seafood with margarine. For cold storage, 3 days and 2 weeks are the most recommended storage periods for refrigeration and frozen storage, respectively. This article can provides consumers with useful information to choose food preparation and storage methods based on their personal interest in specific lipid nutritional quality indicators.

7.
Behav Processes ; 213: 104969, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37989455

RESUMO

This study was conducted to determine the senses that facilitate prey detection in the marble goby (Oxyeleotris marmorata) larvae. The ingestion ratios of live (generate chemical and mechanical stimuli) or frozen Artemia nauplii (generate chemical but no mechanical stimuli) by the intact or free neuromast (mechanoreceptor)-ablated O. marmorata larvae (11 mg/L streptomycin treatment before feeding) under the light or dark (fish vision was obstructed) condition were examined. Vision, mechano-, and chemoreceptions were all found to be essential in prey detection of the O. marmorata larvae. Prey movement has a significant influence as a visual stimuli on the O. marmorata larval feeding as the Artemia nauplii ingestion ratio was approximately 40% higher with significant (p = 0.001, d = 3.0), when the intact larvae were fed with the live (78.1 ± 1.5%), rather than the frozen (40.9 ± 2.8%) Artemia nauplii, under the light condition. This result was assured when no significant difference (p = 0.572, d = 0.2) was found between the ingestion ratios of frozen Artemia nauplii by the intact O. marmorata larvae under light and dark conditions. These findings demonstrate that prey detection in the O. marmorata larvae was facilitated by multi-modal senses, allowing O. marmorata larvae to survive in their natural habitats.


Assuntos
Perciformes , Animais , Larva , Peixes , Comportamento Alimentar
8.
Mar Biotechnol (NY) ; 25(6): 1176-1190, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38010485

RESUMO

Inadequate gonadal maturation and poor spawning performance increasingly threaten the sustainability of shrimp aquaculture. Unraveling the mechanisms regulating ovarian development and maturation hence is critical to address industry challenges. Vitellogenin (Vtg), a precursor of yolk protein found in the hepatopancreas and ovary of shrimp, plays a key role in facilitating shrimp's oocyte maturation and embryonic development after oviposition. This study found that FpVtg was specifically expressed in F. penicillatus hepatopancreas and ovary. FpVtg was localized predominantly in the oocyte cytoplasm and distributed uniformly in the hepatopancreas tissue. Silencing FpVtg led to apoptosis in both hepatopancreas and ovary tissues. Furthermore, FpVtg depletion upregulated the expression of ovarian peritrophin 1, ovarian peritrophin 2, serine proteinase inhibitor 6, and juvenile hormone esterase-like carboxylesterase 1, while downregulated that of vitellogenin, delta-9 desaturase, and insulin-like receptor. KEGG pathway analysis implicated such as PI3K-AKT signaling, RNA transport, ECM-receptor interaction, hippo signaling, oocyte meiosis, and apoptosis were enriched and involved in ovarian development. These findings have provided insights into the FpVtg's reproductive role and the associated regulatory genes and pathways in F. penicillatus. This knowledge can contribute to establishing strategies to improve the breeding and aquaculture production of F. penicillatus by elucidating its vitellogenesis regulation in redtail prawn and other penaeid species. Further characterization of the implicated pathways and genes will clarify the intricacies underlying ovarian maturation.


Assuntos
Ovário , Penaeidae , Animais , Feminino , Vitelogeninas/genética , Vitelogeninas/metabolismo , RNA Interferente Pequeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Vitelogênese/genética
9.
PeerJ ; 11: e15607, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37876908

RESUMO

Intensive research on the effectiveness of chemoattractants has been widely explored to improve the feed qualities in expanding crustacean farming. Taste preferences in slipper lobster remained unknown despite their significant contribution to the lobster fisheries. Chemoattractants allow better performance in aquaculture species by increasing food attractiveness and palatability. Amino acids (AA) have been leading in previous research on crustacean feeding behavior. Given that slipper lobster possesses chemoreceptors to detect and orient towards food, this study investigated an approach to identify the AA with the most potent chemoattractant in eliciting a response from slipper lobster. Behavioral assays were performed to evaluate the responses of slipper lobster Thenus orientalis (carapace length, 52.34 ± 1.52 mm) on 15 crystalline AA and three derivatives of AA (DAA) at three concentrations between 10-1 and 10-3 M as test substances (TS). Meretrix sp. extract was used as a positive control and clean filtered seawater as a negative control. The behavioral responses of 14 T. orientalis were evaluated based on their antennular flicking rate, third maxillipeds activity, and substrate probing by the pereiopods. T. orientalis responded to the solutions of single AA down to a concentration of 10-3 M, excluding histidine and serine. The behavioral activity displayed by T. orientalis increased with the TS concentrations. L-glutamic acid monosodium salt monohydrate, betaine, and glycine solutions elicited the most behavioral responses, whereas histidine exhibited the lowest behavioral responses. Conclusively, L-glutamic acid monosodium salt monohydrate, betaine, and glycine can be potential chemoattractants for T. orientalis.


Assuntos
Aminoácidos , Decápodes , Animais , Aminoácidos/farmacologia , Nephropidae , Ácido Glutâmico , Histidina , Betaína , Glicina
10.
Food Chem X ; 19: 100856, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37780264

RESUMO

Coronary heart disease (CHD) is one of the leading causes of death worldwide. Seafood, especially fish and shellfish, is a healthy food that reduces the risk of CHD. In many regions, seafood is consumed cooked to eliminate potentially pathogenic microorganisms. Although there have been many reports of culinary preparations causing changes in the fatty acid profile of fish and shellfish, this information has not been well organized, and most of it is not associated to CHD. Therefore, this study was conducted to study the effect of culinary treatments of seafood on lipid nutritional quality in relation to promotion/prevention of CHD. In this study, fatty acid profiles of fish and shellfish prepared with different culinary preparations were obtained from published literature. Lipid nutritional quality indices related to promoting/preventing CHD were calculated and analyzed to reveal the effects of culinary treatment on the lipid nutritional quality of fish and shellfish in promoting/preventing of CHD. The information in this article is very useful and can fill the knowledge gap of the effects of culinary preparation on the lipid nutritional quality of fish and shellfish. Such information is very useful for guiding consumers to choose better ways to cook fish and shellfish to reduce the risk of CHD.

11.
Biochem Biophys Res Commun ; 679: 66-74, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37673004

RESUMO

Vitellogenin (Vtg) serves as the precursor of yolk protein and exhibits widespread distribution in tissues, including in the ovary of both vertebrates and invertebrates. Vtg plays a critical role in facilitating oocyte maturation and embryonic development following oviposition. In this study, we have successfully elucidated the complete transcript sequence of TtVtg6-like from an ancient chelicerate Tachypleus tridentatus. The TtVtg6-like transcript encompassed a length of 4887 bp and encoded 1629 amino acids residues. Notably, TtVtg6-like was found to contain 25 exons. Furthermore, the molecular weight and isoelectric point of TtVtg6-like were determined to be 191.6 KDa and 6.73, respectively. Subsequent mRNA expression analysis demonstrated the specific expression of TtVtg6-like in ovary and yellow connective tissue. In addition, TtVtg6-like was located and distributed in both ovary and yellow connective tissue. Intriguingly, employing an siRNA approach to silence TtVtg6-like resulted in a decrease in TtVtg6-like transcription levels. Concomitantly, TtVtg6-like silencing led to increase production of ROS, ultimately resulting in DNA damage and cell apoptosis within the ovarian primary cell. The induction of apoptosis ovarian primary cells due to TtVtg6-like silencing was further corroborated through TUNEL assay and flow cytometry analysis. Overall, our findings underscore the significance of TtVtg6-like in ovarian cell development, revealing its potential association with ovarian cell apoptosis. Consequently, the insights gained from this study contribute to the future exploration of vitellogenesis and ovarian development in T. tridentatus.

12.
Environ Pollut ; 317: 120769, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36455766

RESUMO

Microplastic pollution in our environment, especially water bodies is an emerging threat to food security and human health. Inevitably, the outbreak of Covid-19 has necessitated the constant use of face masks made from polymers such as polypropylene, polyurethane, polyacrylonitrile, polystyrene, polycarbonate, polyethylene, or polyester which eventually will disintegrate into microplastic particles. They can be broken down into microplastics by the weathering action of UV radiation from the sun, heat, or ocean wave-current and precipitate in natural environments. The global adoption of face masks as a preventive measure to curb the spread of Covid-19 has made the safe management of wastes from it cumbersome. Microplastics gain access into aquaculture facilities through water sources and food including planktons. The negative impacts of microplastics on aquaculture cannot be overemphasized. The impacts includes low growth rates of animals, hindered reproductive functions, neurotoxicity, low feeding habit, oxidative stress, reduced metabolic rate, and increased mortality rate among aquatic organisms. With these, there is every tendency of microplastic pollution to negatively impact fish production through aquaculture if the menace is not curbed. It is therefore recommended that biodegradable materials rather than plastics to be considered in the production of face mask while recycle of already produced ones should be encouraged to reduce waste.


Assuntos
COVID-19 , Poluentes Químicos da Água , Animais , Humanos , Microplásticos/toxicidade , Plásticos , Máscaras , Organismos Aquáticos , Aquicultura , Água , Poluentes Químicos da Água/análise , Monitoramento Ambiental
13.
Heliyon ; 8(7): e09989, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35874068

RESUMO

Macrobrachium rosenbergii is one of the shellfish species with high aquaculture value due to its increasing market demand. However, the comparatively low production volume compared to demand coupled with the rapid decline of the natural environment, consequently, drives the potential depletion of the wild population. The decrease in water pH related to anthropogenic pollution is one of the most critical factors affecting the early life performances of M. rosenbergii. Therefore, this study was designed to examine the effect of low water pH on feeding, growth and development of M. rosenbergii early life stages. Experimental water pH was set as neutral (7.7 ± 0.4); mild-acidic (6.4 ± 0.5) and acidic (5.4 ± 0.2) with triplication at a stocking density of 2 larvae/L for 30 days. As expected, M. rosenbergii larvae were highly sensitive to acidic pH with no larvae survived beyond 48 h of exposure. Feeding, survival and growth of larvae were adversely affected by mild-acidic pH exposure as compared to neutral pH. Larvae exposed to mild-acidic water pH experienced a prolonged larval period and only metamorphosed to the post-larval stage at day-30. Whilst under neutral water pH, larval that metamorphosed to post-larval was first observed on day-23. The negative impact of decreased pH, even in mild-acidic pH exposure, on the feeding, survival, growth and development of M. rosenbergii larvae highlights the urgency of periodic pH monitoring during M. rosenbergii larviculture.

14.
Environ Res ; 208: 112718, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35051427

RESUMO

Azolla is a freshwater floating aquatic fern found in the tropical, subtropical and temperate regions with a high nitrogen-fixing rate from the result of symbiotic relationship with the blue-green cyanobacterium, Anabaena azollae. Azolla can effectively remediate aquaculture wastewater owing to its high production capacity and the ability to absorb nutrients and toxic compounds. The Azolla biomass generated as a by-product is currently underutilized and could potentially benefit the aquafeed industry in replacing the unfeasible and expensive fishmeal protein at a certain level. This study evaluates the incorporation of red tilapia wastewater-raised Azolla as a dietary protein for the growth performance, feed efficiency, survival, body indices, body composition and nutrient utilization of Pangasius catfish Pangasianodon hypophthalmus during a 90-days feeding experiment. Dried Azolla was incorporated into four isonitrogenous (30 g kg-1) and isolipidic (12 g kg-1) practical diets containing 0 g kg-1 (Control), 10 g kg-1 (A10), 20 g kg-1 (A20) and 30 g kg-1 (A30) fishmeal protein replacement. One hundred and twenty juveniles with an initial mean weight of 45 ± 15 g were distributed into 12 tanks representing four dietary treatments in triplicates. Results showed significant (p < 0.05) improvement in weight gain (WG), specific growth rate (SGR), protein efficiency ratio (PER) and feed conversion ratio (FCR) in Pangasius catfish fed 10 g kg-1 Azolla protein. Beyond that, WG, SGR, PER and FCR decreased to the lowest value when fed with 30 g kg-1 Azolla protein. No significant (p > 0.05) effects were recorded for feed intake, survival, body indices and nutrient utilization amongst all dietary treatments. In conclusion, Azolla raised from red tilapia aquaculture wastewater can replace fishmeal protein up to 10 g kg-1 in the diet of Pangasius catfish juveniles having better growth, feed efficiency and nutrient utilization without affecting its survival, body indices and body composition.


Assuntos
Peixes-Gato , Gleiquênias , Ração Animal/análise , Animais , Aquicultura/métodos , Dieta/veterinária , Proteínas na Dieta , Águas Residuárias
15.
J Fish Biol ; 99(1): 206-218, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33629400

RESUMO

Climate warming and low pH environment are known to negatively impact all levels of aquatic organism from cellular to organism and population levels. For ammonotelic freshwater species, any abiotic factor fluctuation will cause disturbance to the fish, specifically at the gills which act as a multifunctional organ to support all biological processes. Therefore, this study was designed to investigate the effect of temperature (28 vs. 32°C) and pH (7.0 vs. 5.0) stress on the gill plasticity of Hoven's carp after 20 days of continuous exposure. The results demonstrated that high temperature and low pH caused severe changes on the primary and secondary lamellae as well as the cells within lamellae. An increasing trend of the proportion available for gas exchange was noticed at high temperature in both pH exposures, which resulted from a reduction of the primary lamellae width with elongated and thinner secondary lamellae compared to fishes at ambient temperature. Following exposure to high temperature and acidic pH, Hoven's carp experienced gill modifications including aneurysm, oedema, hypertrophy, curling of secondary lamellae, epithelial lifting, hyperplasia and lamellae fusion. These modifications are indicators of the coping mechanism of Hoven's carp to the changing environment in order to survive.


Assuntos
Carpas , Brânquias , Adaptação Fisiológica , Animais , Concentração de Íons de Hidrogênio , Temperatura
16.
Environ Res ; 198: 110472, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33189743

RESUMO

The Bokashi leachate (BL) is a by-product from the anaerobic digestion of food waste, following the Bokashi composting method. Bokashi leachate is acidic and it contains effective microorganisms hence it has potential to be a functional feed additive to the plant proteins based diets for fish farming. This study evaluated the growth performance and feed utilization of the red tilapia (Oreochromis sp.) fingerlings fed with the BL supplemented soybean meal (SBM) based diets. After an 8-week feeding trial, fish fed with the 5% BL supplemented SBM diet attained the highest weight gain. This result was significantly higher (p < 0.05) than those fed with the 0% BL supplemented SBM diet, and comparable (p > 0.05) to those fed with the control full fish meal (FM) diet. Generally, dietary inclusion of BL enhanced the fish feed intake on the SBM diet but it did not show clear sign of improvement in their feed utilization. In addition, no significant difference was found across the hepatosomatic index and viscerosomatic index from all dietary treatments. These outcomes concluded that dietary inclusion of BL can enhance the feed intake and growth performance of the red tilapia fingerlings fed with the SBM based diet without compromising their health, and the optimum BL inclusion level was 5%. Nevertheless, further study on the properties and substances content of the BL produced from different types and ratios of food waste is strongly recommended. In this study, BL was also discovered to be capable of reducing the crude fiber content in the SBM diets. Such observation deserves a further exploitation on the application of BL to manipulate the crude fiber content in the plant proteins based diets in fish farming.


Assuntos
Eliminação de Resíduos , Tilápia , Ração Animal/análise , Animais , Dieta , Suplementos Nutricionais
17.
Fish Physiol Biochem ; 46(4): 1621-1629, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32430644

RESUMO

Oxyeleotris marmorata is an ambush predator. It is known for slow growth rate and high market demand. Farming of O. marmorata still remains a challenge. In order to establish a proper feeding practice to stimulate growth, knowledge of its metabolic processes and cost should be examined. Therefore, this study was designed to investigate the diel osmorespiration rhythms of O. marmorata in response to feeding challenge by using an osmorespirometry assay. The results have shown that oxygen consumption rate of the fed fish was approximately 3 times higher than that of the unfed fish in early evening to support specific dynamic action. Digestion and ingestion processes were likely to be completed within 18-20 h in parallel with the ammonia excretion noticeable in early morning. Under resting metabolism, metabolic oxygen consumption was influenced by diel phase, but no effect was noted in ammonia excretion. As a nocturnal species, O. marmorata exhibited standard aerobic metabolic mode under dark phase followed by light phase, with high oxygen consumption rate found in either fed or unfed fish. It can be confirmed that both the diel phase and feeding have a significant interactive impact on oxygen consumption rate, whereas ammonia metabolism is impacted by feeding state. High metabolic rate of O. marmorata supports the nocturnal foraging activity in this fish. This finding suggested that feeding of O. marmorata should be performed during nighttime and water renewal should be conducted during daytime.


Assuntos
Peixes/fisiologia , Aclimatação/fisiologia , Amônia/metabolismo , Animais , Ritmo Circadiano/fisiologia , Digestão/fisiologia , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Pesqueiros , Peixes/metabolismo , Água Doce , Osmorregulação/fisiologia , Consumo de Oxigênio/fisiologia , Respiração
18.
Front Immunol ; 10: 3041, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32010132

RESUMO

Carotenoids are biologically active pigments that are well-known to enhance the defense and immunity of the vertebrate system. However, in invertebrates, the role of carotenoids in immunity is not clear. Therefore, this study aims to review the scientific evidence for the role of carotenoids in invertebrate immunization. From the analysis of published literatures and recent studies from our laboratory, it is obvious that carotenoids are involved in invertebrate immunity in two ways. On the one hand, carotenoids can act as antioxidant enzymes to remove singlet oxygen, superoxide anion radicals, and hydroxyl radicals, thereby reducing SOD activity and reducing the cost of immunity. In some organisms, carotenoids have been shown to promote SOD activity by up-regulating the expression of the ZnCuSOD gene. Carotenoids, on the other hand, play a role in the expression and regulation of many genes involved in invertebrate immunity, including thioredoxins (TRX), peptidoglycan recognition receptor proteins (PGRPs), ferritins, prophenoloxidase (ProPO), vitellogenin (Vg), toll-like receptor (TLRs), heat shock proteins (HSPs), and CuZnSOD gene. The information in this review is very useful for updating our understanding of the progress of carotenoid research in invertebrate immunology and to help identify topics for future topics.


Assuntos
Carotenoides/metabolismo , Imunidade , Imunomodulação , Vertebrados/imunologia , Vertebrados/metabolismo , Adaptação Biológica , Animais , Antioxidantes/metabolismo , Suscetibilidade a Doenças , Meio Ambiente , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Oxirredução , Estresse Oxidativo
19.
Trop Life Sci Res ; 29(1): 103-112, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29644018

RESUMO

The effect of low pH on the tactile sense of Macrobrachium rosenbergii postlarvae was determined in the laboratory by means of two behavioural assays: shelter (netting) occupancy and jumping response to touch stimuli (taps) by a glass micropipette. The postlarvae were acclimated to pH 4, pH 5, pH 6 and pH 7.5 (control) in 45 L aquaria 5-7 d before the experiments. Shelter occupancy decreased with pH and was significantly lower at pH 4 and pH 5 than at pH 6 and in the control. The jumping response instantly followed a tap 93-98% of the time in the control, pH 6 and pH 5 treatments. However, the postlarvae showed significantly lower jumping response (65%) at pH 4, indicating an impaired tactile sense. Low pH 4-5 probably degrades the chitin of the sensory setae and inhibits the surface mechanoreceptors of the prawn postlarvae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...